检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐朝阳[1] 孟英峰[1] 魏纳[1] 李皋[1] 万里平[1]
机构地区:[1]油气藏地质及开发工程国家重点实验室(西南石油大学),成都610500
出 处:《应用数学和力学》2014年第12期1373-1382,共10页Applied Mathematics and Mechanics
基 金:国家科技重大专项(2011ZX05021-003);国家自然科学基金(51334003)~~
摘 要:将AUSMV(advection upstream splitting method V)格式从计算气体动力学问题扩展至一维等温瞬态气液两相管流.阐述了采用AUSMV格式构建气液两相漂移模型数值通量的方法及边界单元的处理方法.采用Runge-Kutta方法与经典的保单调MUSCL(monotone upstream-centred schemes for conservation laws)方法结合Van Leer限制器,构建具有二阶时间和空间精度的数值计算方法.计算经典Zuber-Findlay激波管问题和复杂漂移关系变质量流动问题并与可靠的参考结果进行了对比.分析表明:AUSMV格式应用于气液两相流动漂移模型时计算效率高、精度高、耗散效应和色散效应小,低流速条件下能够精确地描述间断.Application of the AUSMV ( advection upstream splitting method V) scheme was ex- tended from gas dynamics to transient 1D isothermal gas-liquid two-phase pipe flow problems. The method of numerical flux for the DFM ( drift flux model) constructed with the AUSMV scheme and treatment of boundary cells were stated for the simulations. The numerical calcula- tion method of 2nd-order accuracy in time and space was obtained with the classical Runge- Kutta method and the monotonous MUSCL ( monotone upstream-centred schemes for conserva- tion laws) technique combined with the Van Leer limiter. The numerical examples including the Zuber-Findlay shock tube problem and the variable mass flow problems with complex slip rela- tious were conducted and comparatively discussed. The results indicate that the proposed AUS- MV scheme, with advantages of high efficiency, high precision and low effects of dissipation and dispersion, accurately details the discontinuities of 1D gas-liquid two-phase flow problems under low flow velocity conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117