检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学机械工程学院,南京210094 [2]北京机电研究所,北京100012
出 处:《固体火箭技术》2014年第5期616-621,共6页Journal of Solid Rocket Technology
摘 要:为准确模拟固体火箭发动机燃烧室内流场,采用基于格心的迎风型有限体积法求解定常雷诺平均Navier-Stokes方程,在空间离散方法上,采用AUSM-PW矢通量分裂格式,时间推进采用三阶三步TVD型Runge-Kutta显式方法,将Menter F R提出的SST(shear-stress-transport)湍流模型及其改进形式用于燃烧室湍流流场的数值模拟,并将计算结果与Wilcox的和Spalart-Allmaras湍流模型进行了对比。结果表明,Menter F R的SST湍流模型计算的燃烧室内的径向速度分布与实验值吻合得最好,最大误差约为5.1%;计算的燃烧室内湍流强度分布与实验的规律一致,而其余湍流模型计算的结果与实验值有很大差异。In order to accurately simulate the solid rocket motor inner flow field,the Reynolds-average Navier-Stokes equations were solved with three-order three-step Runge-Kutta iterative algorithm by cell center finite volume method, AUSM-PW scheme were implemented for spatial discretization. Also, SST ( shear-stress-transport) turbulence model developed by Menter was used to simulate the turbulence flow field of the combustion chamber. Then the result was compared with Wilcox and Spalart-Allmaras turbu-lence model. Simulated results show that the general agreement between computed axial velocity profiles and experimental result is excellently good and the maximum error is only about 5.1%.The overall trends of the numerical turbulent intensity match quite well with experiment for all locations, and there is big disagreement between experiment and the other turbulence models.
关 键 词:SST湍流模型 固体火箭发动机内流场 数值计算
分 类 号:V438[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3