检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiuxia Cao Tao Li Xuhai Li Chuanmin Meng Xianming Zhou Wenjun Zhu
出 处:《Chinese Science Bulletin》2014年第36期5302-5308,共7页
基 金:partially supported by the National Natural Science Foundation of China(U1230202,11072227and 11272294);the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(9140C670302130C67239);the Science and Technology Foundation of China Academy of Engineering Physics(2012A0201007)
摘 要:Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200