Shock wave on materials  

Shock wave on materials

在线阅读下载全文

作  者:Xiuxia Cao Tao Li Xuhai Li Chuanmin Meng Xianming Zhou Wenjun Zhu 

机构地区:[1]National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics

出  处:《Chinese Science Bulletin》2014年第36期5302-5308,共7页

基  金:partially supported by the National Natural Science Foundation of China(U1230202,11072227and 11272294);the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(9140C670302130C67239);the Science and Technology Foundation of China Academy of Engineering Physics(2012A0201007)

摘  要:Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.

关 键 词:冲击波 材料 实验室合成 冲击压力 硅纳米晶体 细晶粒结构 动态负载 发生变化 

分 类 号:O734[理学—晶体学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象