检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈亚军[1] 刘丁[1] 梁军利[1] 张新雨[1]
机构地区:[1]西安理工大学自动化与信息工程学院,西安710048
出 处:《模式识别与人工智能》2014年第11期993-1004,共12页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61471295;61172123);教育部博士点基金项目(No.20136118130001);陕西省科技计划项目(No.2013K07-18);陕西省教育厅科学研究计划项目(No.14JK1524)资助
摘 要:为解决多阈值图像分割中分割区域数较难确定的问题,提出一种基于可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)的自适应多阈值图像分割方法.基于图像直方图的多阈值分割的本质是寻找直方图各峰间的谷底,但其个数较难确定且各局部峰并非都是高斯分布.因此文中用更具普适性的混合α稳定分布拟合直方图,建立包含局部峰个数及各分布元参数的分层贝叶斯概率模型.采用RJMCMC后验概率推理自适应确定混合α稳定分布的分布元个数及各自参数,从而获得分割区域数和多阈值参数.针对单晶炉拉晶图像、人脑核磁共振图像及国际标准测试图进行测试,结果表明该方法准确地建立图像分割模型,得到满意的多阈值分割结果.To solve the problem that it is difficult to choose the number of segmentation regions for muhi-threshold image segmentation, an adaptive multi-threshold image segmentation method based on Reversible Jump Markov Chain Monte Carlo (RJMCMC) method is proposed. Histogram-based image segmentation is essential to search the bottom between peaks. However, the multi-threshold segmentation number is difficult to determine and not all local peaks follow Gaussian distribution. Therefore, mixture of a-stable distributions is adopted to fit image gray level histogram. Firstly, a hierarchical Bayesian probability model is established with the number of local peaks and the various parameters for each component. Then, posterior probability reasoning based on RJMCMC is implemented to adaptively obtain the best number of a-stable distribution function and the parameters for each distribution. The experimental results on the single crystal pulling image, the simulated magnetic resonance imaging (MRI) image and international standardtest images show that the image segmentation model is accurately constructed by the proposed method, and multi-threshold segmentation results of images are satisfactory.
关 键 词:混合α稳定分布 可逆跳跃马尔可夫链蒙特卡罗(RJMCMC) 自适应多阈值分割 贝叶斯推理
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.121.189