检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学建设工程学部,辽宁大连116024
出 处:《力学与实践》2014年第3期345-347,360,共4页Mechanics in Engineering
基 金:大连理工大学2011年创新项目资助(2011704)
摘 要:为了分析压杆失稳的临界力与失稳后杆件屈服形态的关系,在理论推导和试验研究的基础上,提出了通过捕捉细长压杆失稳时的失稳点来确定压杆临界力的分析方法,通过测量细长压杆失稳时微弯状态下杆端的纵向位移,求得临界压力的大小.文中将该方法的实验结果与直接用欧拉公式计算的临界压力进行了比较,结果表明,考虑细长压杆微弯状态时杆端的纵向位移所得到的失稳的临界压力值大于利用欧拉公式计算的临界压力值.In order to analyze the relationship between the critical load and the buckling shape of a pole bar, on the basis of theoretical analysis and experiments, the method of determinating the critical load through looking for the buckling point for a long slender member subjected to axial compressive force is used in this paper. The critical load can be determined by the longitudinal displacement at one end of the compressive member, which is in equilibrium with a small lateral deflection. The critical load with consideration of the longitudinal displacement is compared to that from Euler's formula, and a larger critical load is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28