检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕亚召[1,2] 张日权[2,3] 赵为华[2] 刘吉彩[2]
机构地区:[1]杭州电子科技大学数学系,杭州310018 [2]华东师范大学统计系,上海200241 [3]大同大学数学系,大同200241
出 处:《中国科学:数学》2014年第12期1299-1322,共24页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11171112;11101114和11201190);全国统计科学研究(计划)(批准号:2011LZ051);教育部博士点基金(批准号:20130076110004);中国高等学校学科创新引智计划(批准号:B14019);上海市优秀学科带头人计划(批准号:14XD1401600)资助项目
摘 要:本文提出复合最小化平均分位数损失估计方法 (composite minimizing average check loss estimation,CMACLE)用于实现部分线性单指标模型(partial linear single-index models,PLSIM)的复合分位数回归(composite quantile regression,CQR).首先基于高维核函数构造参数部分的复合分位数回归意义下的相合估计,在此相合估计的基础上,通过采用指标核函数进一步得到参数和非参数函数的可达最优收敛速度的估计,并建立所得估计的渐近正态性,比较PLSIM的CQR估计和最小平均方差估计(MAVE)的相对渐近效率.进一步地,本文提出CQR框架下PLSIM的变量选择方法,证明所提变量选择方法的oracle性质.随机模拟和实例分析验证了所提方法在有限样本时的表现,证实了所提方法的优良性.Abstract In this paper, we propose a composite minimizing average check loss estimation (CMACLE) method for the composite quantile regression (CQR) of the partial linear single-index model (PLSIM) by local linear method. Based on constructive approach, the estimators by CMACLE are able to achieve the best convergence rate. The asymptotical normalities of the estimators are also derived. Meanwhile, the asymptotic efficiency of the CQR estimation relative to the mean regression are investigated. Further more, we propose a variable selection method for the CQR of PLSIM by combining the CMACLE procedure with the adaptive LASSO penalized method. The oracle properties of the proposed variable selection method are also established. Simulations with various non-normal errors and a real data analysis are conducted to assess the finite sample property of the proposed estimation and variable selection methods.
关 键 词:单指标 部分线性 复合分位数回归 渐近正态性 自适应LASSO(least ABSOLUTE SHRINKAGE and selection operator) 变量选择 复合最小平均分位数损失估计
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117