Numerical Simulation of Microstructure Evolution for SA508-3 Steel during Inhomogeneous Hot Deformation Process  被引量:6

Numerical Simulation of Microstructure Evolution for SA508-3 Steel during Inhomogeneous Hot Deformation Process

在线阅读下载全文

作  者:Da-shan SUI Fei CHEN Pei-pei ZHANG Zhen-shan CUI 

机构地区:[1]National Die & Mold CAD Engineering Research Center,Shanghai Jiao Tong University

出  处:《Journal of Iron and Steel Research International》2014年第11期1022-1029,共8页

基  金:Item Sponsored by National Basic Research Program(973Program)of China(2011CB012903);National Natural Science Foundation of China(51075270)

摘  要:Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.

关 键 词:SA508-3 steel inhomogeneous hot deformation microstructure evolution grain size numerical simulation 

分 类 号:TG142.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象