检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方正[1] 张兴亮[1] 王超[1] 顾昕[1] 马盛林[1] 王磊[1] 陈思媛[1]
机构地区:[1]厦门大学物理与机电工程学院,厦门361000
出 处:《生物医学工程学杂志》2014年第6期1278-1282,1293,共6页Journal of Biomedical Engineering
基 金:福建省自然科学基金资助项目(2012J01413);中央高校基本科研业务费专项资金资助项目(2013121018);大学生创新创业训练资助项目(Xmu.DC2014009)
摘 要:本文基于力敏电阻(FSR)传感器,设计了压力测量鞋垫,研制出一套结构简单、稳定可靠、方便穿戴和室外实验的步态检测系统。硬件部分包括足底压力传感器阵列、信号调理单元、主电路单元三部分。系统的软件具有数据采集、信号处理、特征提取及分类等功能。系统采集了一个健康人体的27组步态数据并进行分析,研究各种步态下的压力分布特征,对平地行走、上坡、下坡、上楼梯及下楼梯5种步态模式进行模式识别与分类,通过K最近邻(KNN)分类算法达到了90%的正确率,初步验证了该系统的实用性。Based on force sensing resistor(FSR) sensor, we designed insoles for pressure measurement, which were stable and reliable with a simple structure, and easy to wear and to do outdoor experiments with. So the insoles could be used for gait detection system. The hardware includes plantar pressure sensor array, signal conditioning unit and main circuit unit. The software has the function of data acquisition, signal processing, feature extraction and classifi- cation function. We collected 27 groups of gait data of a healthy person based on this system to analyze the data and study pressure distribution under various gait features, i.e. walking on the flat ground, uphill, downhill, up the stairs, and down the stairs. These five gait patterns for pattern recognition and classification by K-nearest neighbors (KNN) recognition algorithm reached up to 90% accuracy. This preliminarily verified the usefulness of the system.
分 类 号:R318.01[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28