出 处:《Journal of Materials Science & Technology》2014年第11期1071-1077,共7页材料科学技术(英文版)
基 金:supported by the PAPD (No.50831004);the Innovation Fund of Jiangsu Province (No.BY2013072-06);the Natural Science Foundation of Jiangsu Province (No.2012729);the National Natural Science Foundation of China (No.51171078,11374136);the State Key Program for Basic Research of China (No.2010CB631004)
摘 要:In this paper, we report a simple one-step thermal reducing method for synthesis of bimetallic Au@Pd nanoparticles with core-shell structures on the graphene surface. This new type of Au@Pd-G composites is characterized by transmission electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. It is found that Au@Pd nanoparticles with an average diameter of 11 nm are well dispersed on the graphene surface, and the Au core quantity as well as the Pd shell thickness can be quantitatively controlled by loading different amounts of metallic precursors, and the involved core-shell structure formation mechanism is also discussed. The ternary Pt/Au@Pd-G composites can also be synthetized by the subsequent Pt doping. The catalytic performance of Au@Pd-G composites toward methanol electro-oxidation in acidic media is investigated. The results show that Au@Pd-G composites exhibit higher catalytic activity, better stability and stronger tolerance to CO poisoning than Pd-G and Au-G counterparts.In this paper, we report a simple one-step thermal reducing method for synthesis of bimetallic Au@Pd nanoparticles with core-shell structures on the graphene surface. This new type of Au@Pd-G composites is characterized by transmission electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. It is found that Au@Pd nanoparticles with an average diameter of 11 nm are well dispersed on the graphene surface, and the Au core quantity as well as the Pd shell thickness can be quantitatively controlled by loading different amounts of metallic precursors, and the involved core-shell structure formation mechanism is also discussed. The ternary Pt/Au@Pd-G composites can also be synthetized by the subsequent Pt doping. The catalytic performance of Au@Pd-G composites toward methanol electro-oxidation in acidic media is investigated. The results show that Au@Pd-G composites exhibit higher catalytic activity, better stability and stronger tolerance to CO poisoning than Pd-G and Au-G counterparts.
关 键 词:Composite materials NANOPARTICLES Electric properties Materials synthesis Mierostructure
分 类 号:TB383.1[一般工业技术—材料科学与工程] TB333
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...