检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国交通建设股份有限公司西北区域总部,西安710065 [2]中国地质大学计算机学院,武汉430074 [3]武汉工程科技学院,武汉430020
出 处:《地质科技情报》2014年第6期203-208,共6页Geological Science and Technology Information
基 金:湖北省自然科学基金项目(2012195075)
摘 要:中国西部的沙漠、冻土和盐渍土等典型的不良地质现象日益显现,基于遥感影像的不良地质识别已经成为遥感处理研究领域的一个热点和难点。以新疆尉犁县罗布人村寨为研究区域,针对当地典型的不良地质体遥感影像特征,主要探讨SVM分类、K均值分类以及基于因果关系的贝叶斯网络分类3种分类方法,初步尝试不同分类方法的融合,并通过实验对比分析了3种方法的分类效果和精度。结果表明:SVM分类结果为块状分布,K均值分类结果为点状分布,基于因果关系的贝叶斯网络分类取得了更好的分类精度,3种方法取得的影像融合更好地表达了多种不良地质体的识别效果。Typical adverse geological phenomenon of western China such as the deserts,permafrost and salt marshes soil are commonplace for the area,and the remote sensing based on image recognition in these areas has become a hot and difficult research field of remote sensing processing.This article regards Yuri Rob village in Xinjiang as the study area,against the local typical adverse geological remote sensing images,investigating the three classification methods:SVM classification,K-means classification and Bayesian network classifiers based on causal relationship.A preliminary test of different integration of classification methods is made,and an analysis of the classification’s effectiveness and accuracy of the three methods by experimental and comparison is made.The experimental results show that the result of SVM classification is block distribution,K-means classification for dot is distributed,but Bayesian network classification based on causal achieves better classification accuracy,the results of image fusion got by three methods express a variety of adverse geological recognition effect.
分 类 号:P407.8[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.243.141