GRACE RL05-based ice mass changes in the typical regions of antarctica from 2004 to 2012  被引量:3

GRACE RL05-based ice mass changes in the typical regions of antarctica from 2004 to 2012

在线阅读下载全文

作  者:Ju Xiaolei Shen Yunzhong Zhang Zizhan 

机构地区:[1]College of Surveying and Geo-Informatics Engineering,Tongji University [2]Center for Spatial Information Science and Sustainable Development,Tongji University [3]State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences

出  处:《Geodesy and Geodynamics》2014年第4期57-67,共11页大地测量与地球动力学(英文版)

基  金:mainly sponsored by National key Basic Research Program of China(973 Program:2012CB957703);Natural Science Foundation of China(41274035)

摘  要:The Antarctic ice sheet is the largest block of ice on Earth, a tiny change of its ice sheet will have a significant impact on sea level change, so it plays an important role in global climate change. The Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002, provides an alternative method to monitor the Antarctic ice mass variation. The latest Release Level 05 ( RL05 ) version of GRACE time-variable gravity (TVG) data, derived from GRACE observations with improved quality and time-span over 10 years, were released by three GRACE data centers (CSR, JPL and GFZ) in April 2012, which gives us a chance to re-estimate the ice mass change over Antarctic more accurately. In this paper, we examine ice mass changes in regional scale, including Antarctic Peninsula (AP, West Antarctica), Amundsen Sea Embayment (ASE, West Antarctica), Lambert-Amery System (LAS, East Antarctica) and 27 drainage basins based on three data sets. The AP mass change rates are -12.03±0.74 Gt/a (CSR, 2004-2012), -13.92±2.33 Gt/a (JPL, 2004 -2012) , -12.28±0.76 Gt/a (GFZ, 2005-2012) , with an acceleration of -1.50±0.25 Gt/a^2, -1.54±0.26 Gt/a^2, -0. 46±0.28 Gt/a^2 respectively, the ASE mass change rates are -89.22±1.93 Gt/a, -86.28± 2.20 Gt/a, -83.67±1.76 Gt/a with an acceleration of -10. 03±0. 65 Gt/a^2, -8.74±0. 74 Gt/a^2 and -5.69 ±0.68 Gt/a^2, and the LAS mass ehange rates are -4.31±1.95 Gt/a, -7.29±2. 84 Gt/a, 1.20±1.35 Gt/a with an acceleration of -0. 18±0.62 Gt/a^2, 3.55±0.95 Gt/a^2 and 0.97±0.49 Gt/a^2. The mass change rates derived from the three RL05 data are very close to each other both in AP and ASE with the uncertainties much smaller than the change rates, and mass losses are significantly accelerated since 2007 in AP and 2006 in ASE, respectively. However, the mass change rates are significantly different in LAS, negative rate from CSR and JPL data, but positive rate from GFZ data, the uncertainties are even larger than the correspondent change rates. With The Antarctic ice sheet is the largest block of ice on Earth, a tiny change of its ice sheet will have a significant impact on sea level change, so it plays an important role in global climate change. The Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002, provides an alternative method to monitor the Antarctic ice mass variation. The latest Release Level 05 ( RL05 ) version of GRACE time-variable gravity (TVG) data, derived from GRACE observations with improved quality and time-span over 10 years, were released by three GRACE data centers (CSR, JPL and GFZ) in April 2012, which gives us a chance to re-estimate the ice mass change over Antarctic more accurately. In this paper, we examine ice mass changes in regional scale, including Antarctic Peninsula (AP, West Antarctica), Amundsen Sea Embayment (ASE, West Antarctica), Lambert-Amery System (LAS, East Antarctica) and 27 drainage basins based on three data sets. The AP mass change rates are -12.03±0.74 Gt/a (CSR, 2004-2012), -13.92±2.33 Gt/a (JPL, 2004 -2012) , -12.28±0.76 Gt/a (GFZ, 2005-2012) , with an acceleration of -1.50±0.25 Gt/a^2, -1.54±0.26 Gt/a^2, -0. 46±0.28 Gt/a^2 respectively, the ASE mass change rates are -89.22±1.93 Gt/a, -86.28± 2.20 Gt/a, -83.67±1.76 Gt/a with an acceleration of -10. 03±0. 65 Gt/a^2, -8.74±0. 74 Gt/a^2 and -5.69 ±0.68 Gt/a^2, and the LAS mass ehange rates are -4.31±1.95 Gt/a, -7.29±2. 84 Gt/a, 1.20±1.35 Gt/a with an acceleration of -0. 18±0.62 Gt/a^2, 3.55±0.95 Gt/a^2 and 0.97±0.49 Gt/a^2. The mass change rates derived from the three RL05 data are very close to each other both in AP and ASE with the uncertainties much smaller than the change rates, and mass losses are significantly accelerated since 2007 in AP and 2006 in ASE, respectively. However, the mass change rates are significantly different in LAS, negative rate from CSR and JPL data, but positive rate from GFZ data, the uncertainties are even larger than the correspondent change rates. With

关 键 词:GRACE Antarctic ice mass change Antarctic Peninsula Amundsen Sea Embayment Lambert-Amery System 

分 类 号:P223[天文地球—大地测量学与测量工程] P343.6[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象