小波阈值函数旋转机械振动信号去噪方法研究  被引量:7

Research on Rotating Machinery Vihration Signal Denoising with Wavelet Threshold Function

在线阅读下载全文

作  者:付元华[1] 罗仁泽[1] 曹鹏[1] 赵新 刘红军 

机构地区:[1]西南石油大学电气信息学院,四川成都610500 [2]新疆西部明珠建设工程有限公司,新疆克拉玛依834008

出  处:《测控技术》2014年第12期34-37,41,共5页Measurement & Control Technology

基  金:四川省科技支撑计划项目(2012FZ0021);国家自然科学基金项目(61072073)

摘  要:从强背景噪声中提取出微弱的旋转机械振动故障特征信号一直是技术性难题。针对传统全局阈值函数去噪在阈值处不连续和存在恒定偏差的问题,提出一种改进的小波阈值函数分层去噪方法。首先对旋转机械故障信号去噪中的小波参数进行了筛选,然后采用改进的阈值函数,利用最优小波参数对振动信号进行分层阈值降噪处理。理论仿真和实测结果表明,对比传统阈值去噪方法,该方法能有效去除背景噪声,保留振动信号原貌特征信息,提高信噪比和减小均方根误差,适合非平稳振动信号去噪,为旋转机械故障诊断奠定了信号预处理的基础。Extracting weak fault characteristics of rotating machinery vibration signal from strong noisy back- ground has been a technical difficulty. To solve the problems of discontinuity at threshold point and constant deviation in traditional global function, an improved wavelet threshold fuction layered denoising approach is proposed. Firstly, the wavelet parameters are selected from the rotating machinery fault signal denosing, then the vibration signal is de-noised under the improved threshold fuction and optimal wavelet parameters. Theoreti- cal simulation and measured results demonstrate that this approach performs better in suppressing the back- ground noise, keeping original vibration signal characteristic information, enhancing the signal-to-noise ratio, and reducing mean-square-error than traditional threshold denoising method. Therefore, the proposed approach works well in non-stationary vibration signal denoising, and thus lays a foundation for the rotating machinery fault diagnosis and signal processing.

关 键 词:最优小波参数 分层阈值去噪 旋转机械 振动信号 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象