机构地区:[1]华侨大学旅游学院,福建泉州362021 [2]中国旅游研究院旅游安全研究基地,福建泉州362021
出 处:《旅游学刊》2015年第1期83-91,共9页Tourism Tribune
基 金:国家社会科学基金项目"两岸四地旅游应急合作体系建设研究"(12CGL060);国家旅游局旅游业青年专家培养计划(TYETP201317)资助~~
摘 要:文章以2006—2010年我国发生的旅游突发事件案例作为研究样本,以旅游伤亡人数作为研究对象,采用全局趋势分析法、空间自相关模型对旅游突发事件伤亡规模的空间特征进行研究。从人员因素、环境因素和设施因素等结构维度,对旅游突发事件伤亡规模的影响因素进行信息解构,并利用OLS模型和GWR模型对其影响因素的空间特征进行剖析,研究表明:我国旅游突发事件伤亡规模的空间分异特征较为明显,主要表现为由东向西、自北向南皆呈倒U形分布,且东西向差异幅度略大于南北向。此外,Moran指数为0.1626,说明我国旅游突发事件伤亡规模的空间结构呈弱集聚分布态势。在影响因素的非平稳分析中,发现GWR模型估计结果要优于OLS模型。从全局区域看,人员因素、环境因素和设施因素对旅游突发事件伤亡规模的影响较为显著。从局部区域看,各因素的分布皆存在非平稳性,其中,人员因素的各系数段之间在空间上出现靠拢现象。环境因素系数值最高的区域为西南和西北地区。设施因素在空间上的分异特征较为明显,其中,最高系数值主要分布在中部和西南部分地区。As the tourism industry in China rapidly develops, emergencies in or affecting the industry happen more frequently, a situation which is attracting the attention of many scholars. This paper takes the tourism emergencies that occurred between 2006 and 2010 as case materials, and tourism casualties as the research object to further develop our understanding of such emergencies. The paper employs statistical methods in geographical studies to explore the spatial characteristics and influence of casualty scales on tourism emergencies. Using global trend analysis and spatial autocorrelation, we studied the spatial characteristics of the scale of casualties resulting from tourism emergencies. The study shows that the differences in spatial distribution of the casualties from tourism emergencies are significant. The data mainly present an inverted U-shaped distribution from east to west, and south to north, where the east-west difference is slightly larger than the north-south one. According to a Moran scattering plot, the Moran index is 0.1626, which indicates that the spatial distribution of the casualty scale of tourism emergencies is a weak-clustering type. In addition, most provinces are located in the homogeneous quadrant. Using the structural dimensions of human, environmental, and equipment and facility factors, this paper analyzes the spatial characteristics of influential factors based on the use of the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) models. It was found that the GWR model is superior to the OLS model in the non-stationary analysis of these types of factors. In the whole region, the influence of human, environmental, and equipment and facility factors on the casualty scale of particular emergencies is statistically significant. Specifically, in the local region, the distribution of each factor is non-stationary. Inside such a region, each coefficient segment of the human factor appears to be closely aligned in space. The regions with the highest coefficient o
关 键 词:旅游突发事件 伤亡规模 空间特征 影响因素 OLS模型 GWR模型
分 类 号:D63[政治法律—政治学] F592[政治法律—中外政治制度]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...