多视图有监督的LDA模型  被引量:2

Multi-view Supervised Latent Dirichlet Allocation

在线阅读下载全文

作  者:李晓旭[1] 李睿凡[2,3] 冯方向 曹洁[1] 王小捷[2,3] 

机构地区:[1]兰州理工大学计算机与通信学院,甘肃兰州730050 [2]北京邮电大学计算机学院,北京100876 [3]教育部信息网络工程研究中心,北京100876

出  处:《电子学报》2014年第10期2040-2044,共5页Acta Electronica Sinica

基  金:国家自然科学基金(No.61263031);甘肃省自然科学基金(No.1310RJZA034);中央高校基本科研业务费专项资金(No.2013RC0304)

摘  要:本文主要关注多视图数据的分类问题.考虑到集成分类方法可组合多个弱分类器构成一个强分类器,以及主题模型能学习复杂数据的语义表示,本文试图将集成学习思想引入主题模型中,以便同时学习多视图数据的分类规则和预测性语义特征.具体地,结合概率主题模型LDA模型和集成分类方法 Softmax混合模型,提出了一个多视图有监督的分类模型.基于变分EM方法,推导了该模型的参数估计算法.两个真实图像数据集上的实验结果表明了提出模型有较好的分类性能.In the paper,w e mainly focus on classifition on multi-view data.Considering that ensemble methods can combine w eak classifiers to construct a strong classifier,and topic model can learn latent representations from complex data,w e try to introduce ensemble idea to topic model,such that predictive latent representation could be obtained and multi-view classifier could be learned.We propose multi-view supervised latent Dirichlet allocation( multi-view s LDA) model by combining latent Dirichlet allocation model and the mixture of softmax model w hich is an ensemble classification model.M oreover,w e derive a parameter estimation algorithm of the proposed model based on variational expectation maximization( EM)procedure.The experimental results on tw o real datasets show the effectiveness of the proposed model.

关 键 词:多视图分类 概率主题模型 变分期望最大化 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象