检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]玉林师范学院计算机科学与工程学院,广西玉林537000
出 处:《图学学报》2014年第6期889-892,共4页Journal of Graphics
基 金:广西教育厅科研立项项目桂教科研〔2011〕14号文件资助项目(201106LX512);玉林师范学院青年科研资助项目(2010YJQN19)
摘 要:基于稀疏表示的人脸识别算法(SRC)识别率相当高,但是当使用l1范数求最优的稀疏表示时,大大增加了算法的计算复杂度,矩阵随着维度的增加,计算时间呈几何级别上升,该文提出利用拉格朗日算法求解矩阵的逆的推导思路,用一种简化的伪逆求解方法来代替l1范数的计算,可将运算量较高的矩阵求逆运算转变为轻量级向量矩阵运算,基于AR人脸库的实验证明,维度高的时候识别率高达97%,同时,计算复杂度和开销比SRC算法大幅度降低95%。As a recently proposed technique, sparse representation based classification(SRC) has been widely used for face recognition(FR). Sparse representation based SRC algorithm has a high recognition rate. While l1-minimization(l1-min) has recently been studied extensively in optimization, the high computational cost associated with the traditional algorithms has largely hindered their application to high-dimensional, large-scale problems. This paper devotes to analyze the working mechanism of SRC and discusses accelerated l1-min techniques using augmented Lagrangian methods,consequently, we propose a very simple yet much more efficient face classification scheme. The performance of the new algorithms is demonstrated in a robust face recognition of AR database. The experimental results verify that these methods can greatly improve the face recognition speed rate(97% decrease), and maintain a high recognition rate(95%). These methods are of practical values.
关 键 词:稀疏编码 分类方法 人脸识别 小波变换 快速算法
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229