Effects of Nano-Aluminium on The Combustion of A PolyNIMMO-Based Propellant  

Effects of Nano-Aluminium on The Combustion of A PolyNIMMO-Based Propellant

在线阅读下载全文

作  者:Clive Woodley Peter Henning 

机构地区:[1]QinetiQ, MOD Fort Halstead, Sevenoaks, Kent TN14 7BP, United Kingdom

出  处:《火炸药学报》2014年第6期7-11,共5页Chinese Journal of Explosives & Propellants

基  金:funded by the Defence Science and Technology Laboratory(Dstl)part of the UK MoD,under the Hazard Modelling and Simulation task of the UK Energetics(UK-E)programme now consumed by the Weapons Science and Technology Centre(WSTC)

摘  要:Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.

关 键 词:physical chemistry closed vessel burn rate nano-aluminium wear and erosion poly(nitratomethyl methyl oxetane) base propellant 

分 类 号:TJ55[兵器科学与技术—军事化学与烟火技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象