检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李春丽[1]
出 处:《江苏农业科学》2014年第12期429-431,共3页Jiangsu Agricultural Sciences
基 金:江西省自然科学基金(编号:20114BAB201005)
摘 要:在对奇异值分解(singular value decomposition,SVD)去噪基本原理深入分析的基础上,结合小波变换提出了一种农作物图像小波域改进自适应SVD去噪算法。本研究所用算法首先对农作物噪声图像进行3层小波变换,保留低频子图像不变;然后对于水平、垂直、对角方向分布的高频子图像采用改进的自适应SVD算法进行噪声滤除;最后进行小波系数重构。为了有效测试该算法性能,实地拍摄2幅某温室大棚农作物图像作为测试图像,分别将本研究所用算法、SVD算法以及改进过的SVD算法进行去噪性能比较,引入峰值信噪比(Peak signal to noise ratio,PSNR)对几类算法的去噪结果进行定量评价。结果表明,本研究所用算法性能优于另外2种算法,这为农作物噪声图像的处理提供了一种较有效的方法。
关 键 词:农作物图像 随机噪声 小波变换 SVD算法 改进自适应SVD算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术] S126[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74