Optimal constant in an L^2 extension problem and a proof of a conjecture of Ohsawa  被引量:10

Optimal constant in an L^2 extension problem and a proof of a conjecture of Ohsawa

在线阅读下载全文

作  者:GUAN Qi'An ZHOU Xiang Yu 

机构地区:[1]Beijing International Center for Mathematical Research, Peking University [2]School of Mathematical Sciences, Peking University [3]Institute of Mathematics, Academy of Mathematics and Systems Science,Chinese Academy of Sciences [4]Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences

出  处:《Science China Mathematics》2015年第1期35-59,共25页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 11031008)

摘  要:In this paper,we solve the optimal constant problem in the setting of Ohsawa’s generalized L2extension theorem.As applications,we prove a conjecture of Ohsawa and the extended Suita conjecture,we also establish some relations between Bergman kernel and logarithmic capacity on compact and open Riemann surfaces.In this paper, we solve the optimal constant problem in the setting of Ohsawa's generalized L2 extension theorem. As applications, we prove a conjecture of Ohsawa and the extended Suita conjecture, we also establish some relations between Bergman kernel and logarithmic capacity on compact and open Riemann surfaces.

关 键 词:L2 extension theorem optimal L2 estimate Bergman kernel a conjecture of Ohsawa extendedSuita conjecture 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象