机构地区:[1]State Key Laboratory of Water Environment Simulation, Key Laboratory of Water and Sediment Sciences of Ministry of Education,School of Environment, Beijing Normal University [2]School of Chemical and Environmental Engineering, Chongqing Three Gorges University
出 处:《Journal of Environmental Sciences》2014年第12期2369-2378,共10页环境科学学报(英文版)
基 金:supported by the Major State Basic Research Development Program(No.2010CB951104);the National Science Foundation for Distinguished Young Scholars(No.51325902);the National Natural Science Foundation of China(No.51279010)
摘 要:Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides,respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend.Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides,respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend.
关 键 词:Climatic variations Urban lakes Volatile phenols ARSENIC Fluorides SELENIUM Water quality
分 类 号:X524[环境科学与工程—环境工程] X16
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...