机构地区:[1]Triticeae Research Institute, Sichuan Agricultural University [2]College of Agronomy, Sichuan Agricultural University [3]School of Life Science and Engineering, Southwest University of Science and Technology
出 处:《Journal of Integrative Agriculture》2014年第11期2322-2329,共8页农业科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (31301318, 31230053 and 31171556);the National Basic Research Program of China (2011CB100100)
摘 要:Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of crops is an effective resolution to address this issue. To determine the genetic factors controlling micronutrient concentration in wheat, the quantitative trait locus (QTL) analysis for iron, zinc, copper, manganese, and selenium concentrations in two recombinant inbred line populations was performed. In all, 39 QTLs for ifve micronutrient concentrations were identiifed in this study. Of these, 22 alleles from synthetic wheat SHW-L1 and seven alleles from the progeny line of the synthetic wheat Chuanmai 42 showed an increase in micronutrient concentrations. Five QTLs on chromosomes 2A, 3D, 4D, and 5B found in both the populations showed signiifcant phenotypic variation for 2-3 micronutrient concentrations. Our results might help understand the genetic control of micronutrient concentration and allow the utilization of genetic resources of synthetic hexaploid wheat for improving micronutrient efifciency of cultivated wheat by using molecular marker-assisted selection.Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of crops is an effective resolution to address this issue. To determine the genetic factors controlling micronutrient concentration in wheat, the quantitative trait locus (QTL) analysis for iron, zinc, copper, manganese, and selenium concentrations in two recombinant inbred line populations was performed. In all, 39 QTLs for ifve micronutrient concentrations were identiifed in this study. Of these, 22 alleles from synthetic wheat SHW-L1 and seven alleles from the progeny line of the synthetic wheat Chuanmai 42 showed an increase in micronutrient concentrations. Five QTLs on chromosomes 2A, 3D, 4D, and 5B found in both the populations showed signiifcant phenotypic variation for 2-3 micronutrient concentrations. Our results might help understand the genetic control of micronutrient concentration and allow the utilization of genetic resources of synthetic hexaploid wheat for improving micronutrient efifciency of cultivated wheat by using molecular marker-assisted selection.
关 键 词:micronutrient concentration synthetic hexaploid wheat QTL
分 类 号:S512.1[农业科学—作物学] TU241[建筑科学—建筑设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...