Cluster algebra structure on the finite dimensional representations of affine quantum group U_q(_3)  

Cluster algebra structure on the finite dimensional representations of affine quantum group U_q(_3)

在线阅读下载全文

作  者:杨彦敏 马海涛 林冰生 郑驻军 

机构地区:[1]Department of Mathematics, South China University of Technology

出  处:《Chinese Physics B》2015年第1期119-124,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.11475178)

摘  要:In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.

关 键 词:affine quantum group cluster algebra monoidal categorification 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象