机构地区:[1]Department of Chemistry, School of Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) [2]Jin Tian New Material Co., Ltd. [3]COSCO Kansai Paint & Chemicals Co., Ltd.
出 处:《Chinese Journal of Polymer Science》2015年第1期14-22,共9页高分子科学(英文版)
基 金:financially supported by the Program for New Century Excellent Talents in Universities;the National Natural Science Foundation of China(No.21074088)
摘 要:Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.
关 键 词:Anticorrosion Coatings Vinylidene chloride Emulsion polymerization Acrylates.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...