基于粒度计算的分类属性数据离群点检测算法  

Outlier Detection Algorithm for Categorical Data Based on Granular Computing

在线阅读下载全文

作  者:刘晓平[1] 

机构地区:[1]衢州职业技术学院信息工程学院,浙江衢州324000

出  处:《广州城市职业学院学报》2014年第4期75-78,共4页Journal Of Guangzhou City Polytechnic

基  金:衢州职业技术学院2013年度院级科研项目"基于覆盖粒计算的海量数据挖掘模型与方法研究"(QZYZ1308)

摘  要:针对基于距离的离群检测算法无法有效应用于分类属性数据集,本文提出一种基于粒度计算理论的对象离群程度计算公式。基于该公式所计算的对象的离群因子值,对所有对象进行排序,将排序后的前k个对象声明为离群点。为了使用相对简单的方法从分类属性数据集中查找离群点,文中构造了一个算法ODAGr C(Outlier detection algorithm based on granular computing)。理论分析和应用实例证明了ODAGr C算法的有效性和可行性。Many distance-based outlier detection algorithms were proposed in the past,which can not effectively deal with categorical data set. In this paper,a novel formulation is proposed for the outlier degree of objects that is based on the granular computing theory. Each object on the basis of its Outlier Factor is ranked and we declare the top k objects in this ranking to be outliers. In order to develop relatively straightforward solutions to finding outliers from categorical data set,an algorithm is constructed,named ODAGr C( Outlier detection algorithm based on granular computing). Theory analysis and example calculation both manifest that the ODAGr C is efficient and feasible.

关 键 词:离群检测 粗糙集 粒度计算 分类信息系统 粒集 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象