检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民大学信息学院,北京100872 [2]洛阳师范学院信息技术学院,河南洛阳471022
出 处:《软件学报》2015年第1期145-166,共22页Journal of Software
基 金:国家自然科学基金(61379050,91224008);国家高技术研究发展计划(863)(2013AA013204);高等学校博士学科点专项科研基金(20130004130001);中国人民大学科学研究基金(11XNL010)
摘 要:数据的爆炸式增长给传统的关系型数据库带来了巨大的挑战,使其在扩展性、容错性等方面遇到了瓶颈.而云计算技术依靠其高扩展性、高可用性、容错性等特点,成为大规模数据管理的有效方案.然而现有的云数据管理系统也存在不足之处,其只能支持基于主键的快速查询,因缺乏索引、视图等机制,所以不能提供高效的多维查询、join等操作,这限制了云计算在很多方面的应用.主要对云数据管理中的索引技术的相关工作进行了深入调研,并作了对比分析,指出了其各自的优点和不足;对在云计算环境下针对海量物联网数据的多维索引技术研究工作进行了简单介绍;最后指出了在云计算环境下针对大数据索引技术的若干挑战性问题.The explosive growth of the digital data brings great challenges to the relational database management systems in addressing issues in areas such as scalability and fault tolerance. The cloud computing techniques have been widely used in many applications and become the standard effective approach to manage large scale data because of their high scalability, high availability and fault tolerance. The existing cloud-based data management systems can't efficiently support complex queries such as multi-dimensional queries and join queries because of lacking of index or view techniques, limiting the application of cloud computing in many respects. This paper conducts an in-depth research on the index techniques for cloud data management to highlight their strengths and weaknesses. This paper also introduces its own preliminary work on the index for massive IOT data in cloud environment. Finally, it points out some challenges in the index techniques for big data in cloud environment.
关 键 词:云数据管理 索引 HADOOP 大数据 多维查询
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73