Research on calibration method in lab of direct solar channels of Sun photometer  

Research on calibration method in lab of direct solar channels of Sun photometer

在线阅读下载全文

作  者:夏茂鹏 李健军 李正强 高冬阳 庞伟伟 李东辉 郑小兵 

机构地区:[1]Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences [2]Institute of Remote Sensing Applications, Chinese Academy of Science

出  处:《Chinese Optics Letters》2014年第12期59-65,共7页中国光学快报(英文版)

基  金:supported by the National 973 Project Fund(No.2010CB950801);the National Natural Science Foundation of China(No.61275173)

摘  要:We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.

关 键 词:Extraterrestrial atmospheres Laser beams MONOCHROMATORS PHOTOMETERS PHOTOMETRY 

分 类 号:O432[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象