检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国工程物理研究院计算机应用研究所,四川绵阳621900
出 处:《计算机工程与应用》2014年第24期127-132,172,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.60728204/F020404);科技重大专项经费资助(No.2013ZX04006011-102-002)
摘 要:为了在海量轨迹数据库中高效准确地挖掘出异常轨迹,提出了基于划分的异常轨迹检测算法。该算法通过计算局部轨迹点之间的匹配程度来探测异常轨迹,将异常轨迹检测由形状匹配问题转化为传统的异常点检测问题,并设计了一种基于空间划分的网格索引结构,提高算法的运行效率。实验证明,该算法不仅具有较高的挖掘效率,而且能够检测出更具实际意义的异常轨迹。As the development of mobile computing technology and GPS-enabled mobile devices, the services of moving object receive more and more attention. And trajectory outlier detection is a widely appealing application. In this paper, a novel detection algorithm is proposed to mine trajectory outliers from massive trajectory datasets more efficiently. The algorithm is based on space partition and finds trajectory outliers through mining the local trajectory point outlier. In this way,it converts the problem of finding trajectory to traditional outlier detection problem. In addition, a novel index structure is designed to improve the computing efficiency. Experiments show its higher efficiency and its power to find more meaningful trajectory outlier.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222