基于DFNN的智能配电异构无线网络准入控制算法  被引量:2

Access Control Strategy of Heterogeneous Wireless Networks Based on DFNN for Smart Distribution Grid

在线阅读下载全文

作  者:冯勇军[1] 李明霞[1] 罗艺婷[2] 唐良瑞[2] 

机构地区:[1]新疆电力公司,新疆乌鲁木齐830002 [2]华北电力大学,北京102206

出  处:《现代电力》2014年第6期86-91,共6页Modern Electric Power

摘  要:为提高智能配电通信业务的服务质量,根据智能配电网对通信技术的要求,提出一种基于动态模糊神经网络(DFNN)的智能配电异构无线网络准入控制算法。在智能配电网络的异构准入控制模型中构建神经网络系统,以网络的接入阻塞率差作为系统参数强化学习的目标,对网络的负载均衡具有较好的动态适应性。神经网络系统在输入层较多时容易产生太多规则而影响决策结果,而DFNN通过计算当前系统规则的完备性,动态添加规则,并通过计算所有规则的重要性,动态删除规则,使得系统的规则有效而不冗余。仿真结果表明,该方法较多接入选择算法(MLB)明显降低了网络的接入阻塞率,相对于模糊神经网络算法(FNN)而言简化了系统结构,突出了规则的重要性,具有较低的接入阻塞率和更好的均衡效果。According to the requirements of smart distribu- tion grid (SDG), an access control strategy based on dynam- ic fuzzy neural network (DFNN) in heterogeneous wireless networks for SDG is proposed to improve the quality of serv- ice (QoS) of the communication business of SDG. A neural network system is built in heterogeneous access control mod- el of SDG with the objective of taking the equal blocking probability of access networks as system parameter to en- force learning process, which has better dynamic adaptabili- ty for load balancing of the fuzzy neural network. Due to such problem that neural network generate too many rules that may influence the result in input layer, rules are added automatically through calculating completeness of current system rules by DFNN, and rules also can be deleted dynam- ically by computing the importance of all rules, which make system rules work effectively without redundancy. The sire- ulation results show that the blocking probability proposed DFNN obviously decrease of access networks by comparing with that of MLB algorithm. At the same time, DFNN sim- plify the structure of neural network and enforce the impor- tance of rules with. FNN algorithm, which has lower access blocking ratio and better balance effect.

关 键 词:智能配电网 异构无线网络 准入控制 动态模糊神经网络 阻塞率 

分 类 号:TN915.853[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象