A qualitative study on the pulsatile flow phenomenon in a dense fly ash pneumatic conveyor  

A qualitative study on the pulsatile flow phenomenon in a dense fly ash pneumatic conveyor

在线阅读下载全文

作  者:Wei Chen Kenneth C.Williams Isabel Jabs Mark G.Jones 

机构地区:[1]Centre for Bulk Solids and Particulate Technologies,Newcastle Institute for Energy and Resources,The University of Newcastle [2]Faculty of Mechanical Engineering,Leibniz University of Hanover

出  处:《Particuology》2014年第6期81-91,共11页颗粒学报(英文版)

摘  要:Understanding of the dynamic particulate flow structures within a dense gas-fly ash pneumatic conveyor must be improved in order to better aid its design guidance.The complex pulsatile movement of the gas-fly ash mixture dominates the flow performance within the pipeline,and historically,non-invasive measurement devices such as the electrical capacitance tomography(ECT) were often used to sufficiently capture the flow dynamics.However,inadequate studies have been conducted on the pulsatile flow phenomenon,which directly relate to the gas-fly ash two-phase flow performance.This paper aims to investigate the pulsatile flows using an ECT device.Initially,pulsatile flow patterns under various experimental conditions were obtained through ECT.Pulses within a flow were then characterised into pulse growth and decay segments,which represent the superficial fluidisation and deaeration processes during conveying.Subsequently,structural and statistical analyses were performed on the pulse growth and decay segments.Results suggested that the increasing air mass flow rate led to the decrease of the superficial fluidisation/deaeration magnitude,however,the increase of the superficial fluidisation/deaeration durations.Also,the air mass flow rate was indicated as the dominant factor in determining the pulsing statistical parameters.This research provides fundamental insights for further modelling the dense fly ash pneumatic flows.Understanding of the dynamic particulate flow structures within a dense gas-fly ash pneumatic conveyor must be improved in order to better aid its design guidance.The complex pulsatile movement of the gas-fly ash mixture dominates the flow performance within the pipeline,and historically,non-invasive measurement devices such as the electrical capacitance tomography(ECT) were often used to sufficiently capture the flow dynamics.However,inadequate studies have been conducted on the pulsatile flow phenomenon,which directly relate to the gas-fly ash two-phase flow performance.This paper aims to investigate the pulsatile flows using an ECT device.Initially,pulsatile flow patterns under various experimental conditions were obtained through ECT.Pulses within a flow were then characterised into pulse growth and decay segments,which represent the superficial fluidisation and deaeration processes during conveying.Subsequently,structural and statistical analyses were performed on the pulse growth and decay segments.Results suggested that the increasing air mass flow rate led to the decrease of the superficial fluidisation/deaeration magnitude,however,the increase of the superficial fluidisation/deaeration durations.Also,the air mass flow rate was indicated as the dominant factor in determining the pulsing statistical parameters.This research provides fundamental insights for further modelling the dense fly ash pneumatic flows.

关 键 词:Pneumatic conveying Electrical capacitance tomography Fly ash Pulsatile flows Flow pattern analysis 

分 类 号:TQ536.4[化学工程—煤化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象