检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lakshmi Narayan Guin Prashanta Kumar Mandal
机构地区:[1]Department of Mathematics, Visva-BharatiSantiniketan 731 235, West Bengal, India
出 处:《International Journal of Biomathematics》2014年第5期1-26,共26页生物数学学报(英文版)
摘 要:In this paper, spatial patterns of a diffusive predator-prey model with sigmoid (Holling type III) ratio-dependent functional response which concerns the influence of logistic population growth in prey and intra-species competition among predators are investigated. The (local and global) asymptotic stability behavior of the corresponding non- spatial model around the unique positive interior equilibrium point in homogeneous steady state is obtained. In addition, we derive the conditions for Turing instability and the consequent parametric Turing space in spatial domain. The results of spatial pat- tern analysis through numerical simulations are depicted and analyzed. ~rthermore, we perform a series of numerical simulations and find that the proposed model dynamics exhibits complex pattern replication. The feasible results obtained in this paper indicate that the effect of diffusion in Turing instability plays an important role to understand better the pattern formation in ecosystem.
关 键 词:Diffusive model sigmoid functional response pursuit and evasion diffusion-driven instability spatial pattern.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222