检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓金[1] 朱凯[1] 牛智有[1] 程旭云[1]
出 处:《华中农业大学学报》2015年第2期131-135,共5页Journal of Huazhong Agricultural University
基 金:国家公益性行业(农业)科研专项(201003063-04)
摘 要:为探讨利用近红外光谱技术快速检测生物质秸秆中N、C、H、S和O 元素的可行性,采集并制备水稻、小麦、油菜和玉米秸秆样本199个,采用近红外光谱(NIRS)分析技术,结合偏最小二乘(PLS)化学计量学算法,在7400-5550cm^-1波段范围内,比较不同光谱预处理方法的定标效果,建立最优的生物质秸秆中N、C、H、S和O 元素的定量分析模型,并用独立的验证集样本对模型进行验证.验证结果表明所建立的N元素的定量分析模型可用于实际检测;O 元素的定量分析模型可进行实际估测;采用近红外技术用于C元素定量分析是可行的,但模型需要进一步优化;H、S元素采用NIRS技术无法进行定量分析.To investigate the feasibility of fast detection of the elements of N,C,H,S and O of straw biomass by using the near-infrared spectroscopy(NIRS)technology,199 straw samples have been collected and prepared,including the straw of rice,wheat,canola and corn.Near-infrared diffuse reflectance spectroscopy combined with PLS chemometric algorithms has been used to compare the calibration effect with different spectral pretreatment methods in 7 400-5 550cm-1 wavelength range,and the optimal calibration analysis models for N,C,H,S and O element of straw biomass have been established,then the independent samples of validation set were used to validate the model.The validation results show that the established quantitative analysis model for N element can be used in practical detecting;the established quantitative analysis model for O element can be used in practical estimation;the quantitative analysis model of C element by using near-infrared technology is feasible,but the model needs to be further optimized;H and S element can not be quantitatively analyzed by using NIRS technology.
关 键 词:近红外光谱 偏最小二乘算法 生物质秸秆 元素分析
分 类 号:S216.2[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74