基于三维荧光谱降维处理的矿物油识别研究  被引量:8

Study on Mineral Oil Identification Based on a Dimension Reduction Method of Three Dimensional Fluorescence Spectra

在线阅读下载全文

作  者:王玉田[1] 徐婧[1] 周艳岭 

机构地区:[1]燕山大学河北省测试计量技术与仪器重点实验室,河北秦皇岛066004

出  处:《中国激光》2014年第12期245-250,共6页Chinese Journal of Lasers

基  金:国家自然科学基金(61201110;61071202);河北省自然科学基金(F2010001312)

摘  要:以汽油、煤油和柴油为研究对象,并将其作为整体研究,不考虑其中具体组分,利用荧光光谱分析技术,提出一种通过将光谱数据矩阵首尾相连,求取其包络线,利用其表观统计量(选用标准偏差、峰度系数和偏度系数)将三维光谱降为二维光谱的方法,该方法对于光谱有一定程度重叠但光谱形状相似性较低的体系有较好的适用性。结合聚类方法,对油种进行识别,识别率达98%,依据朗伯比尔定律,测定三种油类的荧光强度与浓度的拟合曲线,并对其进行定量分析,加标回收率可达95%以上。并与目前常用的平行因子法进行分辨效率的比较,在计算时间上提高了43%。Kerosene, diesel and gasoline are taken as research objects without considering each oil's components. By fluorescence spectroscopy analysis, a dimension reduction method that turns three-dimensional spectrum into twodimensional spectrum is proposed by linking the spectral datum matrixes end to end , drawing its envelope and extracting the apparent statistic (the standard deviation, coefficient of kurtosis and coefficient of skewness are chosen). The method is applical to the systems of certain degree of spectral overlap but low spectral shape similarity. The recognition rate of the oils is over 98% with clustering analysis. According to the Lambert-Beer law, fitting curve of fluorescence intensity and concentration is used for quantitative analysis and standard addition recovery rate is over 95 %. Distinguish efficiency is increased by 43 %, compared with the parallel factor method used commonly.

关 键 词:光谱学 光谱降维 表观统计量 包络线 聚类分析 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象