Kutta-Joukowski force expression for viscous flow  

Kutta-Joukowski force expression for viscous flow

在线阅读下载全文

作  者:LI Juan XU YiZhe WU ZiNiu 

机构地区:[1]Department of Engineering Mechanics, Tsinghua University

出  处:《Science China(Physics,Mechanics & Astronomy)》2015年第2期90-94,共5页中国科学:物理学、力学、天文学(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11472157);the National Basic Research Program of China(Grant No.2012CB720205)

摘  要:The Kutta Joukowski(KJ) theorem, relating the lift of an airfoil to circulation, was widely accepted for predicting the lift of viscous high Reynolds number flow without separation. However, this theorem was only proved for inviscid flow and it is thus of academic importance to see whether there is a viscous equivalent of this theorem. For lower Reynolds number flow around objects of small size, it is difficult to measure the lift force directly and it is thus convenient to measure the velocity flow field solely and then, if possible, relate the lift to the circulation in a similar way as for the inviscid KJ theorem. The purpose of this paper is to discuss the relevant conditions under which a viscous equivalent of the KJ theorem exists that reduces to the inviscid KJ theorem for high Reynolds number viscous flow and remains correct for low Reynolds number steady flow. It has been shown that if the lift is expressed as a linear function of the circulation as in the classical KJ theorem, then the freestream velocity must be corrected by a component called mean deficit velocity resulting from the wake. This correction is small only when the Reynolds number is relatively large. Moreover, the circulation, defined along a loop containing the boundary layer and a part of the wake, is generally smaller than that based on inviscid flow assumption. For unsteady viscous flow, there is an inevitable additional correction due to unsteadiness.The Kutta Joukowski (K J) theorem, relating the lift of an airfoil to circulation, was widely accepted for predicting the lift of viscous high Reynolds number flow without separation, However, this theorem was only proved for inviscid flow and it is thus of academic importance to see whether there is a viscous equivalent of this theorem. For lower Reynolds number flow around objects of small size, it is difficult to measure the lift force directly and it is thus convenient to measure the velocity flow field solely and then, if possible, relate the lift to the circulation in a similar way as for the inviscid KJ theorem. The purpose of this paper is to discuss the relevant conditions under which a viscous equivalent of the KJ theorem exists that reduces to the inviscid KJ theorem for high Reynolds number viscous flow and remains correct for low Reynolds number steady flow. It has been shown that if the lift is expressed as a linear function of the circulation as in the classical KJ theorem, then the freestream velocity must be corrected by a component called mean deficit velocity resulting from the wake. This correction is small only when the Reynolds number is relatively large. Moreover, the circulation, defined along a loop containing the boundary layer and a part of the wake, is generally smaller than that based on inviscid flow assumption. For unsteady viscous flow, there is an inevitable additional correction due to unsteadiness.

关 键 词:lift force Kutta Joukowski expression viscous flow 

分 类 号:O357[理学—流体力学] O357.1[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象