检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程大学,西安710025 [2]西安现代控制技术研究所,西安710065 [3]第二炮兵装备部驻航天科技集团型号办事处,北京100076
出 处:《固体火箭技术》2014年第6期781-786,共6页Journal of Solid Rocket Technology
摘 要:为了评估复合喷管热防护性能以及获取喷管烧蚀和结构应力分析的工况条件,运用Fluent流体动力学软件,对复合喷管的结构温度场进行了数值仿真。分析中,采用了两方程RNG k-ω湍流模型和增强型壁面函数,利用流固耦合的计算方法,获得了喷管结构瞬态温度场的计算结果,重点分析了结构温度场最终分布状态和初期传播特点,以及喉衬温度随时间的变化规律,估算了喉衬的烧蚀。分析结果表明,喷管结构热防护性能满足要求,温度最高区域位于喷管收敛段中后部,喉衬线烧蚀量约为2.1 mm,为喷管结构进一步优化设计提供了重要参考依据。In order to estimate the heat protection performance and obtain the temperature load for erosion calculation and struc-tural stress analysis, temperature numerical simulation of composite nozzle thermo-structure was implemented by the Fluent CFD software using the fluid-structure coupled method. In the computation, the RNG k-ωturbulence model and the enhanced wall treat-ment method were selected. The temperature distributions at the end of working time and its evolution in initial period were ana-lyzed, and the feature of nozzle throat temperature field with time-varying was investigated. The throat erosion was also estimated by diffusion control model. The simulation results show that the thermo-structure meets the heat protection requirement. The highest temperature zone is located in the middle and posterior portion of nozzle convergent section. The linear erosion thickness of nozzle throat is about 2.1 mm. The results also offer technical support for further optimizing the design of the nozzle thermo-structure.
分 类 号:V438[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28