检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001
出 处:《计算机应用研究》2015年第2期627-629,634,共4页Application Research of Computers
基 金:黑龙江省自然科学基金资助项目(ZD200915)
摘 要:为了提取复杂环境下人脸图像的有效特征,提出了一种结合DMMA(discriminative multi-manifold analysis)和方向梯度直方图(HOG)特征提取算法,利用了一种新的自适应方法计算子图像块的相似度。在DMMA算法中,将一幅样本图像分为不重叠的子图像块后,对每一个小块使用HOG算子进行处理,处理后形成一个统计流形,然后进行特征提取,利用基于重建的流形—流形间的距离最近邻方法进行分类识别。在AR人脸库和FERET人脸库上的实验结果表明,该算法对人脸图像的光照和几何变化比传统的DMMA算法识别性能更好。In order to extract effective features of the complex environment face image, this paper presented a novel method by fusing HOG features and discriminative multi-manifold analysis (DMMA) features. It applied a new adaptive method to calculate similarity between patches of the face image. First, it partitioned each face image into several nonoverlapping patches to form an image set for each sample per person. Then it used histogram of the oriented gradient (HOG) operator to extract image histogram of each an image set. The histogram of each an image set formed a statistics manifold. Last it applied DMMA algorithm to obtain the low-dimensional face image feature. It used the reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results show that the algorithm for face images of light and geometry changes is superior to the general recognition DMMA algorithms on the AR database and FERET database.
关 键 词:统计流形学习 单样本 方向梯度直方图 多流形判别分析
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222