检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学能源与动力工程学院,武汉430063 [2]船舶动力系统运用技术交通行业重点实验室,武汉430063
出 处:《振动与冲击》2015年第1期104-109,144,共7页Journal of Vibration and Shock
基 金:国家自然科学基金资助项目(51079118;51279148);武汉理工大学自主创新研究基金资助(135105006)
摘 要:针对单极子波叠加法在特征波数处声场解的非唯一性问题,采用一种通过添加附加源克服解非唯一性的方法 -附加源波叠加法,即在单极子波叠加法的基础上添加一定数量附加源从而获得声场全波数域内的唯一解。给出了具有解析解的脉动球源、振荡球源及无解析解的立方箱体结构三个数值算例。计算结果表明:对于脉动球源,添加一个附加源就可较好解决声场解的非唯一性问题;对于振荡球源,增加附加源个数可解决声场解的非唯一性问题,但会降低声场解的精度,但通过增加单极子源个数可以很好提高计算精度;该方法计算效率略低于复数矢径波叠加法,但较三极子波叠加法效率更高;对于立方箱体结构,确定了最佳的附加源个数,保证了声场解的唯一性。The additional sources wave superposition method is a method of adding certain additional sources in monopole wave superposition method,which could overcome the problem of non-uniqueness of the acoustic field solution for fictitious wave numbers encountered in monopole wave superposition method.Three numerical examples about the sources of pulsating sphere,swing sphere and cube radiator were given.The numerical results demonstrate that the non-uniqueness problem can be removed by adding one source as for pulsating sphere source.The non-uniqueness problem also can be solved by adding more additional sources as for swing sphere source,but the computational accuracy will decline with the increase of the number of additional sources.By increasing the number of monopole sources,the additional sources wave superposition method can achieve high accuracy.The additional sources wave superposition method is somewhat less efficient than the wave superposition method with complex radius vector,but it is better than the tripole wave supposition method.As for the cube radiator,the acoustic uniqueness solution can be obtained by determining the optimized number of additional sources.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222