基于特征表征的单幅图像超分辨方法(英文)  被引量:7

Single Image Super-Resolution Based on the Feature Sign Method

在线阅读下载全文

作  者:李晓峰[1] 曾蕾[1] 徐进[1] 马世琪 

机构地区:[1]电子科技大学通信与信息工程学院,成都611731

出  处:《电子科技大学学报》2015年第1期22-27,共6页Journal of University of Electronic Science and Technology of China

基  金:Supported by the National Natural Science Foundation of China(61075013);China Postdoctoral Science Foundation(20100471671)~~

摘  要:基于稀疏表示的图像超分辨是近年信号处理中的研究热点,快速准确地找到图像的稀疏表示系数是该方法的关键。该文提出了一种基于特征表征的算法来求解图像块的稀疏表示系数。受压缩感知理论启发,使用联合训练的字典来进行图像超分辨。特征表征算法在每一次迭代中,通过确定稀疏系数的符号,将求解的非凸问题变为凸问题,有效提高所得稀疏系数的准确性和超分辨算法速度。仿真结果显示,与插值法和经典的稀疏表示法比较,特征表征法可以得到更好的主观视觉评价和客观量化评价。Recently, the super-resolution methods based on sparse representation has became a research hotpot in signal processing. How to calculate the sparse coefficients fast and accurately is the key of sparse representation algorithm. In this paper, we propose a feature sign method to compute the sparse coefficients in the search step. Inspired by the compressed sensing theory, two dictionaries are jointly learnt to conduct super-resolution in this method. The feature sign algorithm changes the non-convex problem to a convex one by guessing the sign of the sparse coefficient at each iteration. It improves the accuracy of the obtained sparse coefficients and speeds the algorithm. Simulation results show that the proposed scheme outperforms the interpolation methods and classic sparse representation algorithms in both subjective inspects and quantitative evaluations.

关 键 词:特征表征方法 图像重建 图像分辨率 稀疏表示 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象