基于MODIS数据地表温度反演劈窗算法的比较研究  被引量:1

Comparative study on land surface temperature retrieval using split-window methods based on MODIS data

在线阅读下载全文

作  者:乔小湜[1,2] 孙龙彧[3] 冯锐[4] 纪瑞鹏[4] 于文颖[4] 张淑杰[4] 武晋雯[4] 

机构地区:[1]沈阳中心气象台,辽宁沈阳110166 [2]南京信息工程大学,江苏南京210044 [3]沈阳市气象局,辽宁沈阳110168 [4]中国气象局沈阳大气环境研究所,辽宁沈阳110166

出  处:《气象与环境学报》2014年第6期158-162,共5页Journal of Meteorology and Environment

基  金:辽宁省科技厅"农业气象灾害精细化预报及风险评估研究"(2014210003);公益性行业(气象)专项(GYHY201306036);国家自然科学基金(41101077);江苏省2013年度普通高校研究生科研创新计划项目(CXLX13_481)共同资助

摘  要:选取QIN和SOB两种代表性劈窗算法对辽宁地区地表温度进行反演,并分析二者的精度和误差分布。结果表明:QIN和SOB算法反演的地表温度(Ts)与地面气象台站准同步观测的气温和地温的线性拟合显著,SOB算法线性拟合更好;从误差分布直方图可知,两种算法的反演结果与地温更接近,SOB算法与同步气温和地温在±2.0℃之间的误差比例略高于QIN算法;在野外开展与卫星遥感空间尺度一致的地表温度观测试验,QIN和SOB算法与实测值的平均绝对误差均为1.5℃;与NASA官网发布的地表温度产品对比发现,QIN和SOB算法的平均绝对误差分别为1.75℃和1.70℃;因此,QIN和SOB算法在辽宁地区均适用,而SOB算法误差较小。Using QIN and SOB representative algorithms for retrieving land surface temperature (LST)based on the MODIS in Liaoning province,both precision and error were analyzed.The results show that LST retrieved by QIN and SOB algorithms has a good linear fitting with the observed air temperature and surface temperature,espe-cially for a SOB algorithm.According to the error histograms,retrieved LST by two methods is close to the ob-served surface temperature.Errors of the air and surface temperature between ±2 ℃calculated by two methods are compared,and error ratio of the SOB algorithm is slightly higher than that of the QIN algorithm.Field experiment, being a same resolution with remote sensing data,suggests that mean absolute errors between two the retrieved and observed temperature both are 1.5 ℃.Compared with the LST from NASA website,mean absolute error of the QIN and SOB algorithms are 1.75 ℃and 1.70 ℃,respectively.Thus,the two algorithms both are suitable in Lia-oning province,and the SOB algorithm has less error.

关 键 词:劈窗算法 相关性 误差分析 

分 类 号:P407[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象