出 处:《农业生物技术学报》2015年第1期61-70,共10页Journal of Agricultural Biotechnology
基 金:农业部948项目(No.2013-Z28);陕西省自然科学基础研究计划重点项目(No.2013JZ007);陕西省重点科技创新团队计划(2014KCT-25);西北农林科技大学唐仲英育种基金
摘 要:小麦新种质WB13是普通小麦(Triticum aestivum L.)品种7182与农家二棱大麦(Hordeum vulgare ssp.distichon Hsü.)杂交后回交多代衍生而来的大穗大粒材料。为了明确WB13的遗传基础,本研究利用形态学、细胞学、分子标记及特异片段回收测序等技术对其进行了鉴定。结果表明,采用小麦不同同源群简单重复序列(simple sequence repeat,SSR)标记对WB13和小麦7182进行遗传背景分析发现,两者遗传相似系数(genetic similarity coefficient,GS)达97.0%,田间表现为大穗、大粒,综合农艺性状较好;根尖细胞染色体数目为2n=42,以大麦基因组DNA为探针进行基因组原位杂交(genomic in situ hybridization,GISH)未出现杂交信号;利用大麦特异序列标签位点(sequence-tagged site,STS)标记对WB13和农家二棱大麦进行扩增,发现ABG054(4H)和ABC305B(7H)两个标记在WB13中扩增出了大麦特征条带(分别记为WS1和WS3),经测序及序列比对,发现其与扩增到的大麦序列分别具有100%和98%的相似性,与EMBL数据库中的序列比对,与两者有相似性的全为大麦的序列。利用大麦4H和7H染色体上的35对SSR引物对WB13及其亲本进行扩增,发现与千粒重相关的标记MGB396(4H)在WB13中扩增出了大麦的特异条带。综合以上结果确定WB13含有大麦4H和7H染色体的遗传物质,为小麦-大麦渐渗系材料,且4H染色体渗入片段中可能携带与千粒重相关的有益基因。本研究确定了WB13为小麦-大麦杂种后代,此材料的育成丰富了小麦-大麦中间材料和大穗大粒材料的种质资源。同时本研究在分子水平上初步揭示了WB13大穗大粒特性的成因,为后续构建遗传分析群体进行相关数量性状(quantitative trait loci,QTL)定位及推动WB13的研究利用积累了基础资料。The new germplasm WB 13 is a large spike and grain type of wheat which is selected from the derived lines after crossing and backcrossing multi-generational between common wheat (Triticum aestivum L.) 7182 and two-rowed barley (Hordeum vulgate ssp. distichon Hsii.). In order to identify the geneticfoundation of WB 13, a research work was carried out using the method of morphology, cytology, molecular markers, and specific bands recovery and sequencing. The results showed that the genetic similarity coefficient (GS) was 97.0% between WB13 and wheat 7182 by analyzing their genetic background with several simple sequence repeat (SSR) markers of wheat, but WB 13 had better agronomic traits than its parents and had larger spike and grain than wheat 7182. The chromosome number in root-tip cells of WB 13 was 2n=42. No obvious hybridization signal was observed in genomic in situ hybridization (GISH) using two-rowed barley genomic DNA as probe. Using specific sequence-tagged site (STS) markers of barley, ABG054 and ABC305B, which were located in 4H and 7H chromosomes of Hordeum vulgare, respectively, two specific sequences (named WS1 and WS3) were amplified from WB13. Compared WS1 and WS3 with the sequences amplified from barley using the two same STS markers, 100% and 98% identities were observed, respectively. Furthermore, the sequences similar with both WS1 and WS3 were all from Hordeum vulgare by blasting with the published sequences in EMBL. Using 35 sets of SSR markers distributed among barley 4H and 7H chromosomes to detect WB13 and its parents, a specific band was amplified in WB13 with a marker MGB396 in barley 4H chromosome, which had been identified to link with a quantitative trait loci (QTL) related with thousand-grain weight by previous research. In summary, WB 13 was an introgression line containing parts of the barley 4H and 7H chromosomes. What's more, the barley 4H segments in WB13 may contain some beneficial genes contributed to thousand-grain weight. Our results demons
关 键 词:小麦 大麦 基因组原位杂交(GISH) 序列标签位点(STS) 简单重复序列(SSR) 渐渗系
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...