根据分形理论与五指标评价体系构建NDVI连续空间尺度转换模型  被引量:8

Establishing continuous spatial scaling model of NDVI on fractal theory and five-index estimation system

在线阅读下载全文

作  者:栾海军[1,2,3] 田庆久[1,2] 余涛[4] 顾行发[4] 黄彦[1,2] 胡新礼[4] 杨闫君 

机构地区:[1]南京大学国际地球系统科学研究所,江苏南京210023 [2]南京大学江苏省地理信息技术重点家重点实验室,江苏南京210023 [3]厦门理工学院计算机与信息工程学院,福建厦门361024 [4]中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京100101

出  处:《遥感学报》2015年第1期116-125,共10页NATIONAL REMOTE SENSING BULLETIN

基  金:国家科技重大专项(编号:30-Y20A01-9003-12/13);高等学校博士学科点专项科研基金(编号:20100091110012);国家自然科学基金(编号:41105017);国家重点基础研究发展计划(973计划)(编号:2010CB950800);厦门理工学院国家基金预研项目(编号:XYK201430)

摘  要:针对目前基于统计或物理模型方法的升尺度转换研究中存在的不足,以归一化差分植被指数NDVI为研究对象,基于分形理论提出一种连续空间升尺度转换模型CSSM(Continuous Spatial Scaling Model)构建方法。所构建的模型尺度适用范围更广,且具有一定的物理意义。针对已有研究尚未解决的模型构建的最合理尺度层级确定问题,结合原有的统计学四指标评价体系(r、p、rlo、rup),融入了真实性检验应用效能评价指标(Max_of_abs(Error)),建立了一个基于五指标评价体系的模型构建最合理尺度层级确定方法。以北海市沙田半岛Landsat ETM+影像为实验影像,设定r≥0.8,p<0.05,rlo≥r≤rup及Max_of_abs(Error)≤0.05为评价体系的边界条件,从追求模型尺度适用范围更大的角度考虑,确定出该影像模型构建的最合理尺度层级Level=267,则该模型最高可对30 m×267即8 km分辨率遥感影像进行NDVI验证。通过动态调整此评价体系的边界条件,实现了最合理尺度层级取值的敏感性分析。这些工作使得基于分形理论的NDVI's CSSM构建研究更为系统。Spatial scale transformation is one of the basic and important scientific problems in quantitative remote sensing field. Spatial up-scaling has particularly drawn much attention, as it can effectively help solve difficult problems, e. g. , validation of quantitative remote sensing products. However, some issues remain concerning spatial up-scaling research. ( 1 ) The transformation formula established by statistical methods has no explicit physical meaning and its available range is limited. (2) The lack of rea- sonable retrieved physical models hampers the development of up-scaling based on these models. As an important retrieval method, the up-scaling of NDVI also faces these two issues. To address these problems using statistical and physical methods, continuous spatial scaling model (CSSM) of NDVI on the basis of fractal theory was established. The CSSM exhibits a wide available scale range and partial physical meanings. However, the means of determining the most reasonable Letel ( scale hierarchies) for establishing the model remains an important problem, which is studied in this research. In this research, a precise and rigorous method of determining the most reasonable Level was developed based on a five-index estimation system. The system integrates statistical estimation indices ( r, p, rlo, and rup) and an availability-in-validation index [ largest error in vali- dation, Max_of_abs(Error) ]. It was computed as follows. First, the NDVI CSSM of an image was established on each of the different Leve/s. Second, the indices ( r, p, r/o, and rup) on each Level were compared and analyzed. Third, the most reasonable Level could be computed based on the defined Max_ofz_abs(Error) to establish the widest scale CSSM. Shatian Byland (Beihai City, Guangxi Zhuang Autonomous Region) was selected as the experimental area because of its variety of ground objects and high spatial heterogeneity. Taking the values (r≥0.8, p 〈 0. 05, rlo ≥ r ≤.rup and Max of_abs (Error�

关 键 词:NDVI 空间升尺度转换 连续空间尺度转换模型 分形 五指标评价体系 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象