检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机系统应用》2015年第2期224-228,共5页Computer Systems & Applications
摘 要:传统蚁群优化算法研究已经取得了很多重要的成果,但是在解决大规模组合优化问题时仍存在早熟收敛,搜索时间长等缺点.为此,将邻域搜索技术与蚁群优化算法进行融合,提出一种新的并行蚁群优化算法,实验结果表明,在解决大规模TSP问题时,该算法求解质量和稳定性更好,在短时间内即可得到较高质量的解.Although a lot of important results are achieved in the research of traditional ant colony optimization, and there are many shortcomings in solving large-scale combination optimization problems, such as premature convergence and time consuming. Therefore, a parallelization of ant colony algorithm based on the combination of neighborhood search algorithm and ant colony optimization is proposed and realized. The results of experiment show that the parallel algorithm has much higher quality and stability than that of traditional serial ant colony optimization for solving large-scale TSP problems.
关 键 词:组合优化问题 邻域搜索技术 并行蚁群优化算法 邻域搜索 TSP问题
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117