检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘磊磊[1,2] 张绍和[1,2] 王晓密[2] 郝志斌[1,2]
机构地区:[1]中南大学有色金属成矿预测教育部重点实验室,湖南长沙410083 [2]中南大学地球科学与信息物理学院,湖南长沙410083
出 处:《爆炸与冲击》2015年第1期43-50,共8页Explosion and Shock Waves
基 金:国家自然科学基金项目(51074180)
摘 要:针对岩爆烈度预测的不确定性和影响岩爆发生的各单个指标间互不相容的问题,将变权理论和靶心贴近度相结合,进行岩爆烈度预测。首先,该方法在考虑评判者偏好度的基础上,引入了一种均衡函数,给出了一种变权模式,用来计算各个指标的权重;然后,该方法构造了一种区间关联函数,将单指标关联函数的最大值作为靶心坐标,根据样本与靶心的贴近度来预测岩爆烈度,即靶心贴近度值越大,则岩爆烈度越接近该贴近度所对应的岩爆烈度等级;最后,将该方法应用于灵宝东峪矿区、冬瓜山铜矿和秦岭隧道岩爆预测等实例中,结果表明:该方法不仅可以准确、合理地预测岩爆烈度,而且相比其他方法,该方法不需要任何先验知识,使用起来更直接、更方便。According to the uncertainty of rock burst intensity prediction and the incompatible problem of the single index which mainly influences the rock burst, a method combining variable weight theory with the degree of target approaching is proposed to make prediction of rock burst intensity. First, considering the preference degree of the judge, a variable weight model is given to calculate the weights of indexes based on a balance function. Second, this method constructs an interval incidence function, and the maximum value of incidence function for single index is used to be the target, so the rock burst intensity can be predicted based on the degree of approaching between samples and targets --the larger degree of the target approaching, the higher intensity of the rock burst. Finally, this method is applied to Dongyu rock mine in Lingbao, Dongguashan rock mine and Qinling Tunnel rock burst, and the results show that it can predict the rock burst intensity correctly and reasonably. What's more, compared with other methods like Bayes discriminant analysis method and distance dis- criminant analysis method(DDA), it doesn't need any prior knowledge, and so is very direct and con venient for calculation. Therefore, this method is worthy of promotion and application.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188