检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学防空反导学院,陕西西安710051 [2]空军工程大学装备管理与安全工程学院,陕西西安710051
出 处:《空军工程大学学报(自然科学版)》2015年第1期77-80,共4页Journal of Air Force Engineering University(Natural Science Edition)
基 金:中国博士后基金资助项目(2014T71008)
摘 要:为了准确实现目标分割,提出将信息熵应用于红外图像的分割算法。对一般二维直方图最大熵进行推广,给出了外接4邻域直方图最大熵、灰度级-邻域灰度级绝对差直方图最大熵,以上3种二维信息熵算法均能有效地实现红外图像分割。引入属性直方图的概念,构造合适的属性集,先缩小目标的搜索范围,在此基础上运用信息熵进行目标分割,与单纯信息熵分割算法相比,得到的分割结果图中,目标的形状比较完整且引入的干扰较少。仿真结果表明该算法是有效的。In order to realize segmentation of the IR (infrared) small target image accurately, this paper proposes a segmented algorithm by applying the information entropy method to the infrared image. This paper not only takes the aspect of distribution of gray information into account in the two-dimensional entropy method, but also utilizes fully the spatial neighbor information of the pixel to obtain an ideal effectiveness of segmentation. After the introduction of the maximum entropy method based on the traditional two-dimensional histogram, other two methods based on External 4-connected G-A(Gray level-Average gray level) histogram and the G-G(Gray level-Gray absolute difference) histogram are given and the above methods all work well in the IR small target segmentation. Besides, the bound set of the IR image and the corresponding bound histogram are constructed to narrow the target search scope, and based on its bound histogram the IR image is segmented, by using the above the integer target is obtained with less noise compared with the pure entropy methods. The experiment results show that the algorithm is effective.
分 类 号:TN391[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.230.138