Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO_2/H_2O_2 process  被引量:2

Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO_2/H_2O_2 process

在线阅读下载全文

作  者:张波 仲兆平 付宗明 

机构地区:[1]Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education(School of Energy and Environment, Southeast University)

出  处:《Journal of Central South University》2015年第1期82-87,共6页中南大学学报(英文版)

基  金:Project(2011CB201505)supported by the National Key Basic Research Program of China;Project(BA2011031)supported by the Special Fund of Transformation of Scientific and Technological Achievements of Jiangsu Province,China

摘  要:Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.

关 键 词:photocatalytic oxidation nitric oxide UV/TiO2/H2O2 process 

分 类 号:X701[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象