100Gb/s高速PDM-CO-OFDM系统峰值平均功率比抑制性能研究  被引量:9

Research on Peak-to-Average Power Ratio Reduction Performance for 100 Gb/s High-Speed PDM-CO-OFDM Systems

在线阅读下载全文

作  者:童峥嵘[1] 刘颖慧[1] 曹晔[1] 

机构地区:[1]天津理工大学薄膜电子与通信器件重点实验室,天津300384

出  处:《光学学报》2015年第1期55-60,共6页Acta Optica Sinica

基  金:国家863计划(2013AA014201);天津市自然科学基金(13QNJC01800)

摘  要:利用迭代部分传输序列(IPTS)限幅算法实现100Gb/s高速偏振模复用相干光正交频分复用(PDM-CO-OFDM)系统峰值平均功率比(PAPR)抑制,并对其PAPR、误码率(BER)及非线性性能进行了分析。仿真结果表明,与限幅算法相比,IPTS限幅算法不仅可以进一步降低PAPR,还可以减小光纤的非线性效应,从而提高系统BER性能。当互补累积分布函数(CCDF)等于0.0001时,IPTS限幅算法的门限值比限幅算法的优化了0.62dB。与原始信号相比,IPTS限幅算法的最大峰值功率降低了2.63dBm。相同条件下,IPTS限幅算法在光信噪比(OSNR)为12.28dB时,BER即可达到10-3,而限幅算法的最小BER仅为1.55×10-3。当发射功率等于-1dBm时,IPTS限幅算法的Q值与限幅算法相比提高了0.28dB。The iterative partial transmit sequence(IPTS) clipping algorithm is used to reduce the peak- toaverage power ratio(PAPR) of 100 Gb/s high- speed polarization division multiplexing coherent optical orthogonal frequency division multiplexing(PDM- CO- OFDM) system. PAPR, bit error rate(BER), and nonlinearity performance are analyzed. Simulation results demonstrate that the PAPR, BER, and nonlinearity performance of IPTS clipping algorithm are superior to those of clipping algorithm. At the complementary cumulative distribution function(CCDF) of 0.0001, the threshold value of IPTS clipping algorithm is optimized by 0.62 d B compared with clipping algorithm. Compared with original signal, the maximum peak power of IPTS clipping algorithm is reduced by 2.63 d Bm. In the same conditions, the needed optical signal to noise ratio(OSNR) of IPTS clipping algorithm is 12.28 d B to reach the BER level of 10- 3. However, the minimum BER of clipping algorithm is only 1.55×10- 3. At the launch power of-1 d Bm, the Q value of IPTS clipping algorithm is improved by 0.28 d B compared with clipping algorithm.

关 键 词:光通信 相干光正交频分复用 偏振模复用 峰值平均功率比 迭代部分传输序列 限幅 

分 类 号:TN913.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象