A Remark on Strong Law of Large Numbers for Weighted U-Statistics  

A Remark on Strong Law of Large Numbers for Weighted U-Statistics

在线阅读下载全文

作  者:Hyung-Tae HA Mei Ling HUANG 

机构地区:[1]Department of Applied Statistics,Gachon University [2]Department of Mathematics and Statistics,Brock University

出  处:《Acta Mathematica Sinica,English Series》2014年第9期1595-1605,共11页数学学报(英文版)

基  金:The first author is supported by Basic Science Research Program through the National Research Foundationof Korea funded by the Ministry of Education,Science,and Technology(Grant No.2011-0013791);the secondauthor is partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada;the third author is partially supported by a grant from the Natural Sciences and Engineering Research Councilof Canada

摘  要:Let (X, Xn; n≥ 1} be a sequence of i.i.d, random variables with values in a measurable space (S,8) such that E|h(X1, X2,..., Xm)| 〈 ∞, where h is a measurable symmetric function from Sm into R = (-∞, ∞). Let {wn,i1,i2 im ; 1 ≤ i1 〈 i2 〈 …… 〈im 〈 n, n ≥ m} be a matrix array of real numbers. Motivated by a result of Choi and Sung (1987), in this note we are concerned with establishing a strong law of large numbers for weighted U-statistics with kernel h of degree m. We show that whenever SUP n≥m max1〈i1〈i2〈…〈im≤|wn i1,i2 i,im| 〈∞, where 0 = Eh(X1, X2,..., Xm). The proof of this result is based on a new general result on complete convergence, which is a fundamental tool, for array of real-valued random variables under some mild conditions.Let (X, Xn; n≥ 1} be a sequence of i.i.d, random variables with values in a measurable space (S,8) such that E|h(X1, X2,..., Xm)| 〈 ∞, where h is a measurable symmetric function from Sm into R = (-∞, ∞). Let {wn,i1,i2 im ; 1 ≤ i1 〈 i2 〈 …… 〈im 〈 n, n ≥ m} be a matrix array of real numbers. Motivated by a result of Choi and Sung (1987), in this note we are concerned with establishing a strong law of large numbers for weighted U-statistics with kernel h of degree m. We show that whenever SUP n≥m max1〈i1〈i2〈…〈im≤|wn i1,i2 i,im| 〈∞, where 0 = Eh(X1, X2,..., Xm). The proof of this result is based on a new general result on complete convergence, which is a fundamental tool, for array of real-valued random variables under some mild conditions.

关 键 词:Strong law of large numbers weighted U-statistics complete convergence 

分 类 号:O211.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象