检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kang Zhang Jinxing Liu Yi Zhang Zhimin Yang Caixia Gao
机构地区:[1]College of Horticulture,Nanjing Agricultural University [2]The State Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences
出 处:《Journal of Genetics and Genomics》2015年第1期39-42,共4页遗传学报(英文版)
基 金:funded by the Ministry of Agriculture of China(Nos.2014ZX0801003B and 2013ZX08002-004)
摘 要:Wheat (Triticum aestivum L.) is a major staple food crop worldwide. It is economically important because it can be grown in a wide range of climates and geographic regions, and it has made an enormous contribution to the increase in global food production over the past four decades (Dixon et al., 2009). Wheat is produced on more than 18% of the arable land in the world, and is the most cultivated crop after maize and rice (FAOSTAT data, 2014). Despite its global strategic significance, progress in genomic and genetic engineering research on wheat has lagged behind that on other major crops due to the difficulty of culturing tissues, and the complexity of its hexaploid genome. The first successful wheat trans- formation was achieved by particle bombardment (Vasil et al., 1992). Since then additional transgenic wheat plants have been obtained by various transformation methods (Harwood, 2011). Microprojectile bombardment is considered to be a promising method, since it is robust, versatile and relatively efficient in terms of gene delivery.Wheat (Triticum aestivum L.) is a major staple food crop worldwide. It is economically important because it can be grown in a wide range of climates and geographic regions, and it has made an enormous contribution to the increase in global food production over the past four decades (Dixon et al., 2009). Wheat is produced on more than 18% of the arable land in the world, and is the most cultivated crop after maize and rice (FAOSTAT data, 2014). Despite its global strategic significance, progress in genomic and genetic engineering research on wheat has lagged behind that on other major crops due to the difficulty of culturing tissues, and the complexity of its hexaploid genome. The first successful wheat trans- formation was achieved by particle bombardment (Vasil et al., 1992). Since then additional transgenic wheat plants have been obtained by various transformation methods (Harwood, 2011). Microprojectile bombardment is considered to be a promising method, since it is robust, versatile and relatively efficient in terms of gene delivery.
关 键 词:VARIETIES Biolistic Genetic Transformation of a Wide Range of Chinese Elite Wheat Triticum aestivum L gene
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249