Vegetable Production After Flooded Rice Improves Soil Properties in the Red River Delta, Vietnam  

Vegetable Production After Flooded Rice Improves Soil Properties in the Red River Delta, Vietnam

在线阅读下载全文

作  者:Arij P.EVERAARTS Jacques J.NEETESON Pham T.T.HUONG Paul C.STRUIK 

机构地区:[1]Applied Plant Research, Wageningen University and Research Centre [2]Plant Research International, Wageningen University and Research Centre [3]Field Crop Research Institute, Hai Duong and Hanoi University of Agriculture [4]Centre for Crop Systems Analysis, Wageningen University

出  处:《Pedosphere》2015年第1期130-139,共10页土壤圈(英文版)

基  金:carried out in the framework of the‘Perm Veg’project(2007-2013);part of the strategic research program KB1"Global Food Security:Scarcity and Transition"which was funded by the Dutch Ministry of Economic Affairs,and carried out by Wageningen University and Research Centre

摘  要:Vegetable production in South East Asia often is in rotation with flooded rice. The puddling of the soil with flooded rice production may result in unfavourable soil conditions for the subsequent production of dry land crops. To establish whether permanent vegetable production results in favourable soil conditions for vegetables, the effects of five different permanent vegetable production systems and a system of vegetable production in rotation with flooded rice on soil properties after flooded rice were studied in a 2-year field experiment. Bulk density at 0.05–0.10 m depth layer decreased with permanent vegetable production and vegetable production in rotation with flooded rice. The decrease in bulk density was influenced by the application of organic manure and rice husks, and especially by the number of crops cultivated, suggesting that frequency of soil tillage had a major effect on bulk density. Ploughing with buffalo traction after flooded rice, in combination with construction of raised beds, could reduce or totally eliminate negative effects of puddling on soil structure. Bulk density at 0.15–0.20 m soil depth was not influenced. Soil acidity decreased significantly in all systems. Soil organic carbon increased in all systems, but significant increase was only found in two permanent vegetable production systems. Available phosphorus(P) significantly increased in two permanent vegetable production systems, with a positively correlation to the amount of P applied. The significant decrease in bulk density and increase in p H(H2O), after only 2 years, showed that soil conditions after flooded rice could be improved in a short time under intensive vegetable production.Vegetable production in South East Asia often is in rotation with flooded rice. The puddling of the soil with flooded rice production may result in unfavourable soil conditions for the subsequent production of dry land crops. To establish whether permanent vegetable production results in favourable soil conditions for vegetables, the effects of five different permanent vegetable production systems and a system of vegetable production in rotation with flooded rice on soil properties after flooded rice were studied in a 2-year field experiment. Bulk density at 0.05–0.10 m depth layer decreased with permanent vegetable production and vegetable production in rotation with flooded rice. The decrease in bulk density was influenced by the application of organic manure and rice husks, and especially by the number of crops cultivated, suggesting that frequency of soil tillage had a major effect on bulk density. Ploughing with buffalo traction after flooded rice, in combination with construction of raised beds, could reduce or totally eliminate negative effects of puddling on soil structure. Bulk density at 0.15–0.20 m soil depth was not influenced. Soil acidity decreased significantly in all systems. Soil organic carbon increased in all systems, but significant increase was only found in two permanent vegetable production systems. Available phosphorus(P) significantly increased in two permanent vegetable production systems, with a positively correlation to the amount of P applied. The significant decrease in bulk density and increase in pH(H2O), after only 2 years, showed that soil conditions after flooded rice could be improved in a short time under intensive vegetable production.

关 键 词:available phosphorus bulk density organic carbon PUDDLING soil fertility soil improvement 

分 类 号:S158[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象