检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学管理与经济学部,辽宁大连116024
出 处:《计算机应用研究》2015年第3期800-805,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(71271038)
摘 要:由于老年人生理机能减退,针对老年人的提醒服务应用十分广泛。该类服务应考虑到老人的活动特征和环境特征才能提高服务效果,减少不必要的干扰。情境感知技术的发展为提醒服务的改进提供了契机,将情境引入到提醒服务的设计中,采用OWL本体方法构建领域内情境与服务知识的语义模型,以提醒服务平台的方式集成领域内提醒相关的设备与服务,并结合本体模型采用SWRL规则设计提醒服务的自协调策略,从而提高平台上不同提醒服务的自适应能力。通过模拟若干情境,采用Protégé和Pellet推理机验证了本体模型的正确性和协调规则的有效性。As the body functions of the old have decreased, reminder services for these people are being widely used. While services of this kind should take the feature of users' behavior and environment into consideration, in order to increase service effect and decrease disturbance to users. The quick development of context-aware technology brings new opportunity to improve such services by introducing context information into the design of reminder services. This paper used OWL ontology to build semantic model of domain context and service knowledge. It integrated domain reminder-related devices and services into re- minder service platform, and the platform adopted SWRL rules, which combined the above ontology models to develop self-co- ordination strategies and improve self-adaption among services. Finally, it provided several situations, used Protege software and Pellet reasoning engine to verify the effectiveness of the key proposed approaches.
关 键 词:提醒服务 情境 OWL本体 SWRL规则 自协调策略
分 类 号:TP311.52[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143