单通道脑电信号中眼电干扰的自动分离方法  被引量:15

Automatic Electrooculogram Separation Method for Single Channel Electroencephalogram Signals

在线阅读下载全文

作  者:吴明权[1] 李海峰[1] 马琳[1] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001

出  处:《电子与信息学报》2015年第2期367-372,共6页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61171186;61271345);语言语音教育部-微软重点实验室开放基金(HIT.KLOF.2011XXX);中央高校基本科研业务费专项资金(HIT.NSRIF.2012047)资助课题

摘  要:当前主流的眼电(EOG)去除方法需要利用多通道脑电的相关性,难以在单通道的便携式脑机接口(BCI)中应用。该文提出一种基于长时差分振幅包络与小波变换的眼电干扰自动分离方法。首先在原脑电信号的长时差分振幅包络上实施双门限法来精确检测眼电的起止点,然后利用sym5小波对脑电进行分解并引进Birgé_Massart策略来自适应地确定小波重构系数阈值,最后通过小波重构精确地估计眼电,实现单通道上眼电与脑电的自动分离。大量实验证明,该方法与主流的平均伪迹回归分析和基于独立成分分析(ICA)的方法相比,能够获得更好的估计眼电与原眼电的相关性,保证更高的校正信噪比和较强的实时性,能够满足脑机接口多方面的需要。The traditional Electro Oculo Gram(EOG) correction methods usually use the correlation information of multi-channel Electro Encephalo Gram(EEG), and are difficult to apply to portable Brain-Computer Interface(BCI) in single channel. An automatic EOG separation method is proposed based on the long term difference amplitude envelope and the wavelet transformation in the paper. Firstly, the accurate EOG beginning and ending points are detected on the long term difference amplitude envelope of the original EEG through a dual thresholds method. Secondly, the sym5 wavelet is applied to decompose the original EEG signal, and the Birgé_Massart strategy is introduced to adaptively determine the thresholds of wavelet coefficients. Finally, the EOG is accurately reconstructed and separated from the EEG in this channel. Compared with the popular regression analysis of averaging artifact and the Independent Component Analysis(ICA) based methods, the proposed method is proved to achieve a better correlation measure between the separated EOG and the original EOG, a higher signal-to-noise ratio of the corrected EEG, and a good real-time operating speed for most BCI application requirements.

关 键 词:单通道脑电信号 眼电分离 小波变换 长时差分振幅包络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象