检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马玉珠[1,2] 钟全林[1,2] 靳冰洁[1,2] 卢宏典 郭炳桥 郑媛[1,2] 李曼[1,2] 程栋梁[1,2]
机构地区:[1]福建师范大学地理研究所,福州350007 [2]福建师范大学地理科学学院,湿润亚热带山地生态国家重点实验室培育基地,福州350007
出 处:《植物生态学报》2015年第2期159-166,共8页Chinese Journal of Plant Ecology
基 金:国家自然科学基金(31170374;31170596和31370589);福建省教育厅新世纪优秀人才支持计划(JA12055);福建省杰出青年基金(2013J06009)
摘 要:为了研究中国陆地植物细根碳(C)、氮(N)、磷(P)的空间变化模式,揭示细根在"温度-植物生理假说"及"生长速率假说"等方面的规律,该文收集已发表的有关中国陆地植物细根研究的文献,从中提取细根C、N、P元素含量及其相关数据,分析了细根C、N、P含量及其比例与经纬度之间的关系。结果表明:细根N、P元素含量均随纬度增加而增加,P含量随经度增加而降低,N:P随经度增加而增加。细根N、P含量与年平均气温、年降水量均呈负相关关系,与土壤养分呈正相关关系。在土壤养分、温度、降水量3个非生物因素中,土壤养分对细根N、P含量的影响最大。该文中细根和粗根的C:P、N:P差异变化不完全支持"生长速率假说"。根系和叶片一样,N、P含量与纬度呈正相关关系,支持"温度-植物生理假说",反映了植物对自然环境的适应策略。Aims Fine roots and leaves are important below- and above-ground functional organs. It is widely recognized that leaf nitrogen (N) and phosphorus (P) stoichiometry displays significant latitudinal variations, and two com- peting theories (i.e. Temperature-Plant Physiological Hypothesis and Growth Rate Hypothesis) have been pro- posed to explain this phenomenon. Although considerable efforts have been made to test these theories, compara- tively few data have been reported for the plants in China to examine the latitudinal and longitudinal variations in fine root carbon (C), N and P stoichiometry. Accordingly, we compiled an extensive data set of root C, N and P stoichiometry, our objective was to address three main issues: (1) whether the C, N and P stoichiometric latitu- dinal patterns for roots conform to those reported for leaves, (2) how exactly does root C, N and P stoichiometry changes as a function of longitude, and (3) whether the Temperature-Plant Physiological Hypothesis or Growth Rate Hypothesis can account for the latitudinal pattems observed for fine root stoichiometry. Methods We compiled data on fine root C, N and P contents, climate, and geographic location, and analyzed the correlations among these variables. Important findings The N and P contents were higher in fine roots as opposed to coarse roots. The N and P contents in fine roots increased with increasing latitude. P content in fine roots declined with increasing longitude, whereas the N:P of fine roots increased with increasing longitude. The N and P contents in fine roots were nega- tively correlated with mean annual temperature and mean annual precipitation, but positively correlated with soil nutrient. Among the three abiotic factors (i.e. soil N and P contents, temperature and precipitation), soil N and P levels had the greatest effect on the N and P contents in fine roots. The variations observed in fine and coarse root C:P and N:P were inconsistent with the Growth Rate Hypothesis, whereas the p
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.141.195